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Abstract 

The spatial entity used within a digital soil mapping framework can have profound implications for data 

reliability and interpretability. We compare the quality of results and maps of the variability of available 

water capacity (AWC) generated by both the classical point prediction approach and an innovative method 

that involves a block estimator. Rather than a single prediction point in the centre of a pixel, the block 

estimator method takes the weighted average of the soil attribute across the entire extent of a pixel through a 

block kriging approach. The results indicate AWC varies continuously across the landscape. However, maps 

produced by our block estimator method result in predictions and maps which are more fluid and smoothed 

reflecting a more realistic representation of the variability.  
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Introduction 

The pixel model is an efficient method in which to display the spatial variability of soil properties and 

classes in a map format (Grunwald 2006). It is generally assumed that the value predicted for a soil property 

or class at a pixel is the same at every point within the extent of that pixel, no matter the resolution. In 

actuality, the predicted soil value is a single point located at the centre of the pixel (Figure 1). Thus the short 

range soil variability that may occur within a pixel will not be accurately addressed. A more appropriate 

method in which to assign a predicted soil value to a pixel is by way of a bulked mean within the entire 

extent of the pixel.  

 

 
Figure 1. Representation of the pixel model and associated point prediction in the centre of the pixel. 

 

For this study we demonstrate a method in which a mean prediction of soil properties within a pixel can be 

evaluated by using an existing point predicted digital soil map. This method involves the use of block 

kriging, where the kriged value represents a statistically weighted average of the entire extent of the pixel 

(Whelan et al. 2001).  Using available water capacity (AWC) as an exemplar soil property, we compare and 

contrast maps produced by both methods i.e. point predictions vs. bulked mean predictions. 

 

Methods 

Study area 

The study site (1500km
2
) is situated near Narrabri (30.32S 149.78E), 500km NNW of Sydney, NSW, 

Australia. Agricultural enterprises such as cropping and pastoral farming are predominant in the area 

(Figure2). The soil dataset consists of 341 soil profiles (Figure 2). The dataset describes and quantifies 
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various soil morphological, physical and chemical attributes at depth intervals of 0–0.1, 0.1–0.2, 0.3–0.4, 

0.7–0.8, 1.2–1.3 and 2.5–2.6m (McGarry et al. 1989). The focus of this study was the prediction of AWC in 

the top 10cm of the soil profile; therefore we were only concerned with measurements in the 0-10cm depth 

increment. Using sand, clay and organic matter as inputs (McGarry et al. 1989) a pedo-transfer function 

generated estimates of AWC at each sample point (Minasny et al. 2006).  

 

 
Figure 2. The Edgeroi study area. 

 

Environmental data 

A number of environmental covariates were sourced and interpolated onto a common grid of 90m resolution. 

These included:  

• 3 arc-second (90m) digital elevation model (DEM). First and second derivatives, namely: slope, terrain 

wetness index (TWI), flow path length, altitude above channel network (AOCN) and multi-resolution 

index of valley bottom flatness (MRVBF) were determined.  

• Landsat 7 ETM+ images from 2003. The Landsat bands were used for the approximation of land cover 

and land use. Vegetation cover and type was estimated using the Normalised Difference Vegetation 

Index (NDVI). Furthermore, the band ratios or more commonly, soil enhancement ratios of b3/b2, b3/b7 

and b5/b7 were also derived.  

• Gamma-radiometric survey data which provides a measure of the spatial distribution of three radioactive 

elements (potassium-K, thorium-Th and uranium-U) in the top 30-45 cm of the earth’s crust. This data 

was used to approximate the distribution of various parent materials over the landscape. 

 

Data analysis  

We used a regression kriging approach to predict AWC at each sample point and across the study area. A 

neural network was constructed on a training data set of 261 points (leaving 80 for validation). The input 

variables were the various layers of environmental covariates. The target variable was the measured value of 

AWC at each training point. After the modeling process, residuals were evaluated for each point. A semi-

variogram was used to assess the spatial distribution of residuals. We used an exponential model to krig the 

residuals onto the common 90m grid of the Edgeroi.  For model validation, the profile formulae were applied 

to the 80 withheld data points. Residuals, estimated from the semi-variogram model of the training step 

residuals were added to the prediction resulting in a final prediction.  

 

For mapping point estimates of AWC, profile formulae from the neural network were applied to the common 

90m grid geo-database where only information relating to the environmental data existed to make predictions 

of AWC. A final prediction was determined by adding the kriged residual to the prediction at each point. A 

point predicted map of AWC was the resulting product of this procedure. 

 

The final predictions of the point estimates of AWC were used as inputs for the block mean estimation. As a 

first step to the block estimation method is the realization uncertainty of the prediction at each point or pixel. 

The residual estimate is a good indication of this. As we could quantify this element of uncertainty, we 

incorporated it within the block kriging procedure by defining it as the sigma
2
 parameter. The sigma

2
 

parameter was calculated by evaluating the variance of all the residuals across the study area.  Secondly, the 

common grid was off-set by 1m to the left from the original grid. With the incorporation of the sigma
2 
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parameter, block kriging was performed onto the offset grid. The block size used had equal-side dimensions 

of 90m. For each prediction via block, local exponential variograms were used. A block estimated predicted 

map of AWC was the resulting product of this procedure. 

 

Results 

For neural network training we used a 3 hidden node network. Lin’s concordance correlation coefficient 

(CCC) between the observed and predicted AWC values was 0.61, indicating a substantial agreement along 

the 45° line (Lin 2000). Validation results were less impressive where a fair agreement (CCC = 0.27) was 

observed between the observed and predicted (Figure 3a). There was very little spatial autocorrelation of 

residuals beyond a separation distance of 83m (Figure 3b) which resulted in only a minor improvement in the 

final prediction where the CCC was 0.34 indicating still some significant deviations from the 45° line (Figure 3c).   

 

   
Figure  3. Validation results. (a) Observed vs. predicted plot (b) semi-variogram of residuals (c) Observed vs. 

final prediction plot.    

 

The model results indicate there was some correlation between the target variable AWC and the available 

environmental data. This is shown in Figure 4a where AWC varies significantly across the study area. Some 

notable patterns exist such as a generally higher to lower gradient of AWC in the east to west direction. This 

coincides with an increasing proportion of land used for cropping as one moves in a westerly direction across 

the study area. Additionally the topography itself also becomes more open and flatter in the western area in 

comparison to the more undulating land features in the east.  

 

 
Figure  3. Comparisons of  maps of AWC variability in the 0–10cm depth range  generated from point 

predictions (a) and block estimated predictions (c). Zoomed in zone of 5km
2 
of predictions made from points (b) 

or blocks (d).  
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The result of the block estimation method was overall very positive due to the fact that the visual appearance 

of the map is a lot smoother and clearer for interpretation than that of the point estimated map (Figure 3c). 

Broadly, the spatial variation of AWC changes very little when comparing both maps. The key difference is 

that in areas where there is significant local variation, the point predictions appear quite noisy in comparison 

to the block estimates where there is a more gradual transition in predicted values across an area. This 

phenomenon is illustrated where we selected a 5km
2 
zone within the study area that displayed what appeared 

to be a high degree of spatial variability. Overall, it is difficult to separate both methods in terms of the 

general variation of AWC in the zone. However, for the point estimated predictions (Figure 3b), the zone is 

clearly pixilated or noisy. On the other hand, for the block estimations (Figure 3d), interpretation of AWC 

variability is easier to define as the noisiness has been smoothed resulting in a clearer map.  

 

Discussion and conclusions 

Block estimations of AWC across the Edgeroi significantly improved the visual quality and interpretability 

of the generated map. The procedure had the effect of smoothing out some of the noisiness that results from 

point predictions resulting in a more realistic depiction of AWC across the Edgeroi area. In a general context, 

the spatial entity of a soil map has significant implications for the interpretability of soil information. 

Essentially a pixel value of a soil property is a single observation located at the centre of that pixel. It is 

problematic to assume this value is the same for the entire extent of the pixel. Thus a more appropriate 

method for making predictions within a pixel is the incorporation of a block estimator in which makes a 

prediction that represents a statistically weighted average across the entire extent of a pixel. The result is that 

collectively, predictions are more continuous from one pixel to the next. This improves the quality of 

predictions, enhances the interpretability of the resulting soil map and realistically illustrates the spatial 

variation of soil properties across a defined area. As this method is relatively simple to implement, this 

method could easily be appended to the methodologies of other DSM projects.  
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